1213 - Sum of Different Primes
- first 3 state dp problem of mine.
- States are,
index, n, k
(not hard to realize).
- Variation of the above problem, base on 01 knapsack.
Memoization version
```cpp
/*
* arePrimes store prime no.s till 1120 because that was the limit given in the que.
* memo used to memoization purpose.
*/
vector<vector<vector>> memo;
int dp(int n, int k, int i) {
if (n == 0 and k == 0)
return 1;
if (n == 0 or k == 0)
return 0;
if (n < 0 or k < 0)
return 0;
if (arePrimes[i] > n)
return 0;
int &ans = memo[n][k][i];
if (ans != -1)
return ans;
ans = dp(n - arePrimes[i], k - 1, i + 1) + dp(n, k, i + 1);
return ans;
}
void solve() {
int n, k;
while (cin >> n >> k) {
if (n == 0 and k == 0)
return;
memo.resize(1121);
for (auto &i : memo) {
i = vvi(15, vi(200, -1));
}
cout << dp(n, k, 0) << '\n';
}
}
```
</details>
- Iterative version, approach mentioned in comments.
Iterative version
```cpp
/*
* arePrimes store prime no.s till 1120 because that was the limit given in the que.
* memo used to memoization purpose.
*/
int N, K;
while (cin >> N >> K) {
if (N == 0 and K == 0)
return;
vector<vector> dp(16, vector(1180, 0));
dp[0][0] = 1;
/* This loop has to be in the start, if this is added as 3rd one, WA, reason
* yet to know */
for (int i = 0; i < arePrimes.size(); i++)
/* Bottom up approach, building our table from bottom most element*/
for (int k = 14; k >= 1; k--)
for (int n = 1170; n >= arePrimes[i]; n--)
/* simple 01 knapsack */
dp[k][n] += dp[k - 1][n - arePrimes[i]];
cout << dp[K][N] << '\n';
```
</details>